rustworkx.generators.generalized_petersen_graph#
- generalized_petersen_graph(n, k, multigraph=True)#
Generate a generalized Petersen graph \(G(n, k)\) with \(2n\) nodes and \(3n\) edges. See Watkins [1] for more details.
Note
The Petersen graph itself is denoted \(G(5, 2)\)
- Parameters:
n (int) – number of nodes in the internal star and external regular polygon.
k (int) – shift that changes the internal star graph.
multigraph (bool) – When set to
False
the outputPyGraph
object will not be not be a multigraph and won’t allow parallel edges to be added. Instead calls which would create a parallel edge will update the existing edge.
- Returns:
The generated generalized Petersen graph.
- Return type:
- Raises:
IndexError – If either
n
ork
are not validTypeError – If either
n
ork
are not non-negative integers
import rustworkx.generators from rustworkx.visualization import mpl_draw # Petersen Graph is G(5, 2) graph = rustworkx.generators.generalized_petersen_graph(5, 2) layout = rustworkx.shell_layout(graph, nlist=[[0, 1, 2, 3, 4],[6, 7, 8, 9, 5]]) mpl_draw(graph, pos=layout)
# Möbius–Kantor Graph is G(8, 3) graph = rustworkx.generators.generalized_petersen_graph(8, 3) layout = rustworkx.shell_layout( graph, nlist=[[0, 1, 2, 3, 4, 5, 6, 7], [10, 11, 12, 13, 14, 15, 8, 9]] ) mpl_draw(graph, pos=layout)